Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.260
Filtrar
1.
Nat Rev Clin Oncol ; 21(5): 337-353, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38424196

RESUMO

Accumulating evidence indicates that aberrant signalling stemming from genetic abnormalities in cancer cells has a fundamental role in their evasion of antitumour immunity. Immune escape mechanisms include enhanced expression of immunosuppressive molecules, such as immune-checkpoint proteins, and the accumulation of immunosuppressive cells, including regulatory T (Treg) cells, in the tumour microenvironment. Therefore, Treg cells are key targets for cancer immunotherapy. Given that therapies targeting molecules predominantly expressed by Treg cells, such as CD25 or GITR, have thus far had limited antitumour efficacy, elucidating how certain characteristics of cancer, particularly genetic abnormalities, influence Treg cells is necessary to develop novel immunotherapeutic strategies. Hence, Treg cell-targeted strategies based on the particular characteristics of cancer in each patient, such as the combination of immune-checkpoint inhibitors with molecularly targeted agents that disrupt the immunosuppressive networks mediating Treg cell recruitment and/or activation, could become a new paradigm of cancer therapy. In this Review, we discuss new insights on the mechanisms by which cancers generate immunosuppressive networks that attenuate antitumour immunity and how these networks confer resistance to cancer immunotherapy, with a focus on Treg cells. These insights lead us to propose the concept of 'immuno-genomic precision medicine' based on specific characteristics of cancer, especially genetic profiles, that correlate with particular mechanisms of tumour immune escape and might, therefore, inform the optimal choice of immunotherapy for individual patients.


Assuntos
Neoplasias , Medicina de Precisão , Linfócitos T Reguladores , Microambiente Tumoral , Humanos , Linfócitos T Reguladores/imunologia , Neoplasias/imunologia , Neoplasias/genética , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Microambiente Tumoral/imunologia , Imunoterapia/métodos , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia
2.
Nat Commun ; 14(1): 6569, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848444

RESUMO

While macrophage phagocytosis is an immune defense mechanism against invading cellular organisms, cancer cells expressing the CD47 ligand send forward signals to repel this engulfment. Here we report that the reverse signaling using CD47 as a receptor additionally enhances a pro-survival function of prostate cancer cells under phagocytic attack. Although low CD47-expressing cancer cells still allow phagocytosis, the reverse signaling delays the process, leading to incomplete digestion of the entrapped cells and subsequent tumor hybrid cell (THC) formation. Viable THCs acquire c-Myc from parental cancer cells to upregulate both M1- and M2-like macrophage polarization genes. Consequently, THCs imitating dual macrophage features can confound immunosurveillance, gaining survival advantage in the host. Furthermore, these cells intrinsically express low levels of androgen receptor and its targets, resembling an adenocarcinoma-immune subtype of metastatic castration-resistant prostate cancer. Therefore, phagocytosis-generated THCs may represent a potential target for treating the disease.


Assuntos
Antígeno CD47 , Macrófagos , Metástase Neoplásica , Fagocitose , Proteínas Proto-Oncogênicas c-myc , Evasão Tumoral , Humanos , Masculino , Proteínas de Transporte , Antígeno CD47/metabolismo , Macrófagos/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/imunologia , Transdução de Sinais , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Metástase Neoplásica/genética , Metástase Neoplásica/imunologia , Células Tumorais Cultivadas
3.
Nature ; 619(7970): 624-631, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37344596

RESUMO

Loss of the Y chromosome (LOY) is observed in multiple cancer types, including 10-40% of bladder cancers1-6, but its clinical and biological significance is unknown. Here, using genomic and transcriptomic studies, we report that LOY correlates with poor prognoses in patients with bladder cancer. We performed in-depth studies of naturally occurring LOY mutant bladder cancer cells as well as those with targeted deletion of Y chromosome by CRISPR-Cas9. Y-positive (Y+) and Y-negative (Y-) tumours grew similarly in vitro, whereas Y- tumours were more aggressive than Y+ tumours in immune-competent hosts in a T cell-dependent manner. High-dimensional flow cytometric analyses demonstrated that Y- tumours promote striking dysfunction or exhaustion of CD8+ T cells in the tumour microenvironment. These findings were validated using single-nuclei RNA sequencing and spatial proteomic evaluation of human bladder cancers. Of note, compared with Y+ tumours, Y- tumours exhibited an increased response to anti-PD-1 immune checkpoint blockade therapy in both mice and patients with cancer. Together, these results demonstrate that cancer cells with LOY mutations alter T cell function, promoting T cell exhaustion and sensitizing them to PD-1-targeted immunotherapy. This work provides insights into the basic biology of LOY mutation and potential biomarkers for improving cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Deleção Cromossômica , Cromossomos Humanos Y , Evasão Tumoral , Neoplasias da Bexiga Urinária , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Cromossomos Humanos Y/genética , Proteômica , Microambiente Tumoral/imunologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/terapia , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Perfilação da Expressão Gênica , Genômica , Prognóstico , Sistemas CRISPR-Cas , Edição de Genes , Técnicas In Vitro , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Citometria de Fluxo , Imunoterapia
4.
Front Immunol ; 14: 1084887, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033994

RESUMO

Background: The immune cell topography of solid tumors has been increasingly recognized as an important predictive factor for progression of disease and response to immunotherapy. The distribution pattern of immune cells in solid tumors is commonly classified into three categories - namely, "Immune inflamed", "Immune desert" and "Immune excluded" - which, to some degree, connect immune cell presence and positioning within the tumor microenvironment to anti-tumor activity. Materials and methods: In this review, we look at the ways immune exclusion has been defined in published literature and identify opportunities to develop consistent, quantifiable definitions, which in turn, will allow better determination of the underlying mechanisms that span cancer types and, ultimately, aid in the development of treatments to target these mechanisms. Results: The definitions of tumor immune phenotypes, especially immune exclusion, have largely been conceptual. The existing literature lacks in consistency when it comes to practically defining immune exclusion, and there is no consensus on a definition. Majority of the definitions use somewhat arbitrary cut-offs in an attempt to place each tumor into a distinct phenotypic category. Tumor heterogeneity is often not accounted for, which limits the practical application of a definition. Conclusions: We have identified two key issues in existing definitions of immune exclusion, establishing clinically relevant cut-offs within the spectrum of immune cell infiltration as well as tumor heterogeneity. We propose an approach to overcome these limitations, by reporting the degree of immune cell infiltration, tying cut-offs to clinically meaningful outcome measures, maximizing the number of regions of a tumor that are analyzed and reporting the degree of heterogeneity. This will allow for a consensus practical definition for operationalizing this categorization into clinical trial and signal-seeking endpoints.


Assuntos
Neoplasias , Evasão Tumoral , Humanos , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Microambiente Tumoral/imunologia , Consenso , Evasão Tumoral/imunologia
5.
Adv Sci (Weinh) ; 10(11): e2206792, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36775874

RESUMO

High lymphocyte infiltration and immunosuppression characterize the tumor microenvironment (TME) in renal cell carcinoma (RCC). There is an urgent need to elucidate how tumor cells escape the immune attack and to develop novel therapeutic targets to enhance the efficacy of immune checkpoint blockade (ICB) in RCC. Overactivated IFN-γ-induced JAK/STAT signaling involves in such TME, but the underlying mechanisms remain elusive. Here, EH domain-binding protein 1-like protein 1 (EHBP1L1) is identified as a crucial mediator of IFN-γ/JAK1/STAT1/PD-L1 signaling in RCC. EHBP1L1 is highly expressed in RCC, and high EHBP1L1 expression levels are correlated with poor prognosis and resistance to ICB. EHBP1L1 depletion significantly inhibits tumor growth, which is attributed to enhanced CD8+ T cell-mediated antitumor immunity. Mechanistically, EHBP1L1 interacts with and stabilizes JAK1. By competing with SOCS1, EHBP1L1 protects JAK1 from proteasomal degradation, which leads to elevated JAK1 protein levels and JAK1/STAT1/PD-L1 signaling activity, thereby forming an immunosuppressive TME. Furthermore, the combination of EHBP1L1 inhibition and ICB reprograms the immunosuppressive TME and prevents tumor immune evasion, thus significantly reinforcing the therapeutic efficacy of ICB in RCC patient-derived xenograft (PDX) models. These findings reveal the vital role of EHBP1L1 in immune evasion in RCC, which may be a potential complement for ICB therapy.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Evasão Tumoral , Humanos , Antígeno B7-H1/metabolismo , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Evasão da Resposta Imune , Janus Quinase 1/metabolismo , Neoplasias Renais/imunologia , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Transdução de Sinais , Evasão Tumoral/genética , Evasão Tumoral/imunologia
6.
Eur J Immunol ; 53(2): e2250198, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36440686

RESUMO

Natural killer (NK) cell activation is regulated by activating and inhibitory receptors that facilitate diseased cell recognition. Among activating receptors, NKG2D and DNAM-1 play a pivotal role in anticancer immune responses since they bind ligands upregulated on transformed cells. During tumor progression, however, these receptors are frequently downmodulated and rendered functionally inactive. Of note, NKG2D internalization has been associated with the acquisition of a dysfunctional phenotype characterized by the cross-tolerization of unrelated activating receptors. However, our knowledge of the consequences of NKG2D engagement is still incomplete. Here, by cytotoxicity assays combined with confocal microscopy, we demonstrate that NKG2D engagement on human NK cells impairs DNAM-1-mediated killing through two different converging mechanisms: by the upregulation of the checkpoint inhibitory receptor TIGIT, that in turn suppresses DNAM-1-mediated cytotoxic function, and by direct inhibition of DNAM-1-promoted signaling. Our results highlight a novel interplay between NKG2D and DNAM-1/TIGIT receptors that may facilitate neoplastic cell evasion from NK cell-mediated clearance.


Assuntos
Células Matadoras Naturais , Neoplasias , Evasão Tumoral , Humanos , Células Matadoras Naturais/imunologia , Neoplasias/genética , Neoplasias/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Transdução de Sinais , Evasão Tumoral/genética , Evasão Tumoral/imunologia
7.
Nature ; 606(7913): 389-395, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35589842

RESUMO

Cancer immunoediting1 is a hallmark of cancer2 that predicts that lymphocytes kill more immunogenic cancer cells to cause less immunogenic clones to dominate a population. Although proven in mice1,3, whether immunoediting occurs naturally in human cancers remains unclear. Here, to address this, we investigate how 70 human pancreatic cancers evolved over 10 years. We find that, despite having more time to accumulate mutations, rare long-term survivors of pancreatic cancer who have stronger T cell activity in primary tumours develop genetically less heterogeneous recurrent tumours with fewer immunogenic mutations (neoantigens). To quantify whether immunoediting underlies these observations, we infer that a neoantigen is immunogenic (high-quality) by two features-'non-selfness'  based on neoantigen similarity to known antigens4,5, and 'selfness'  based on the antigenic distance required for a neoantigen to differentially bind to the MHC or activate a T cell compared with its wild-type peptide. Using these features, we estimate cancer clone fitness as the aggregate cost of T cells recognizing high-quality neoantigens offset by gains from oncogenic mutations. With this model, we predict the clonal evolution of tumours to reveal that long-term survivors of pancreatic cancer develop recurrent tumours with fewer high-quality neoantigens. Thus, we submit evidence that that the human immune system naturally edits neoantigens. Furthermore, we present a model to predict how immune pressure induces cancer cell populations to evolve over time. More broadly, our results argue that the immune system fundamentally surveils host genetic changes to suppress cancer.


Assuntos
Antígenos de Neoplasias , Sobreviventes de Câncer , Neoplasias Pancreáticas , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Linfócitos T/imunologia , Evasão Tumoral/imunologia
8.
Cell Immunol ; 372: 104469, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35114597

RESUMO

Gastric cancer (GC) originates from the stomach and is a prevalent human malignancy. Dysfunction of death associated protein kinase 1 (DAPK1) has been identified as a major regulator involved in the development and progression of GC. However, there's limited data regarding the regulatory mechanism of GC. Herein, we investigated role of DAPK1 in natural killer (NK) cell killing ability and immune evasion of GC cells and mediated pathway. Samples from GC-related gene expression profile and clinical samples from 67 patients with GC were collected to determine the expression of DAPK1, IκB kinase ß (IKKß), programmed death receptor-ligand 1 (PD-L1), and photomorphogenesis 9 (COP9) signalosome 5 (CSN5). The binding affinity among DAPK1, IKKß, CSN5, and PD-L1 was characterized to verify the underlying mechanism. GC lines were transfected with overexpressed plasmid or siRNA to determine the effect of DAPK1/IKKß/CSN5/PD-L1 axis on NK cell killing ability and immune evasion of GC cells. GC cells and tissues presented low expression of DAPK1 and high expression of IKKß, CSN5 and PD-L1. IKKß, negatively regulated by DAPK1, was capable of activating CSN5 and upregulating PD-L1 expression. Overexpression of DAPK1 promoted NK cell killing ability and reduced immune evasion, coupled with reduction of NK cell apoptosis and increases in levels of TNF-α, IFN-γ, CD107a, and Granzyme B cytokines. The tumor-suppressing properties of DAPK1 through downregulation of IKKß/CSN5/PD-L1 axis in GC were further confirmed in vivo. In summary, overexpression of DAPK1 promoted the NK cell killing ability and restrained immune evasion of GC cells, providing a potential therapeutic strategy for GC treatment by modulating immune evasion.


Assuntos
Antígeno B7-H1/metabolismo , Complexo do Signalossomo COP9/metabolismo , Proteínas Quinases Associadas com Morte Celular/metabolismo , Quinase I-kappa B/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células Matadoras Naturais/imunologia , Peptídeo Hidrolases/metabolismo , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/metabolismo , Animais , Antígeno B7-H1/genética , Complexo do Signalossomo COP9/genética , Linhagem Celular Tumoral , Proteínas Quinases Associadas com Morte Celular/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Quinase I-kappa B/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Células Matadoras Naturais/metabolismo , Camundongos , Camundongos Nus , Modelos Biológicos , Peptídeo Hidrolases/genética , Fosforilação , Prognóstico , Neoplasias Gástricas/genética , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Ubiquitinação , Regulação para Cima
9.
J Immunol ; 208(5): 1280-1291, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35121641

RESUMO

Inflammatory bowel disease such as chronic colitis promotes colorectal cancer, which is a common cause of cancer mortality worldwide. Hypoxia is a characteristic of inflammation as well as of solid tumors and enforces a gene expression response controlled by hypoxia-inducible factors (HIFs). Once established, solid tumors are immunosuppressive to escape their abatement through immune cells. Although HIF activity is known to 1) promote cancer development and 2) drive tumor immune suppression through the secretion of adenosine, both prolyl hydroxylases and an asparaginyl hydroxylase termed factor-inhibiting HIF (FIH) negatively regulate HIF. Thus, FIH may act as a tumor suppressor in colorectal cancer development. In this study, we examined the role of colon epithelial FIH in a mouse model of colitis-induced colorectal cancer. We recapitulated colitis-associated colorectal cancer development in mice using the azoxymethane/dextran sodium sulfate model in Vil1-Cre/FIH+f/+f and wild-type siblings. Colon samples were analyzed regarding RNA and protein expression and histology. Vil1-Cre/FIH+f/+f mice showed a less severe colitis progress compared with FIH+f/+f animals and a lower number of infiltrating macrophages in the inflamed tissue. RNA sequencing analyses of colon tissue revealed a lower expression of genes associated with the immune response in Vil1-Cre/FIH+f/+f mice. However, tumor occurrence did not significantly differ between Vil1-Cre/FIH+f/+f and wild-type mice. Thus, FIH knockout in colon epithelial cells did not modulate colorectal cancer development but reduced the inflammatory response in chronic colitis.


Assuntos
Neoplasias Associadas a Colite/patologia , Colite/patologia , Neoplasias Colorretais/patologia , Mucosa Intestinal/patologia , Oxigenases de Função Mista/metabolismo , Adenosina/metabolismo , Animais , Azoximetano/toxicidade , Hipóxia Celular/fisiologia , Colite/induzido quimicamente , Colite/genética , Neoplasias Associadas a Colite/genética , Colo/patologia , Neoplasias Colorretais/genética , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Células Epiteliais/patologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigenases de Função Mista/genética , Prolil Hidroxilases/metabolismo , Transdução de Sinais/fisiologia , Evasão Tumoral/imunologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
10.
Nat Commun ; 13(1): 866, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165282

RESUMO

Epstein-Barr virus (EBV) is reportedly the first identified human tumor virus, and is closely related to the occurrence and development of nasopharyngeal carcinoma (NPC), gastric carcinoma (GC), and several lymphomas. PD-L1 expression is elevated in EBV-positive NPC and GC tissues; however, the specific mechanisms underlying the EBV-dependent promotion of PD-L1 expression to induce immune escape warrant clarification. EBV encodes 44 mature miRNAs. In this study, we find that EBV-miR-BART11 and EBV-miR-BART17-3p upregulate the expression of PD-L1 in EBV-associated NPC and GC. Furthermore, EBV-miR-BART11 targets FOXP1, EBV-miR-BART17-3p targets PBRM1, and FOXP1 and PBRM1 bind to the enhancer region of PD-L1 to inhibit its expression. Therefore, EBV-miR-BART11 and EBV-miR-BART17-3p inhibit FOXP1 and PBRM1, respectively, and enhance the transcription of PD-L1 (CD274, http://www.ncbi.nlm.nih.gov/gene/29126 ), resulting in the promotion of tumor immune escape, which provides insights into potential targets for EBV-related tumor immunotherapy.


Assuntos
Herpesvirus Humano 4/genética , MicroRNAs/genética , Carcinoma Nasofaríngeo/imunologia , Neoplasias Nasofaríngeas/imunologia , Neoplasias Gástricas/imunologia , Evasão Tumoral/imunologia , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Herpesvirus Humano 4/imunologia , Humanos , Linfoma/imunologia , Linfoma/virologia , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/virologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/virologia , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Neoplasias Gástricas/virologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Evasão Tumoral/genética , Microambiente Tumoral/imunologia
11.
Front Immunol ; 13: 828875, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211123

RESUMO

Hypoxia is an environmental stressor that is instigated by low oxygen availability. It fuels the progression of solid tumors by driving tumor plasticity, heterogeneity, stemness and genomic instability. Hypoxia metabolically reprograms the tumor microenvironment (TME), adding insult to injury to the acidic, nutrient deprived and poorly vascularized conditions that act to dampen immune cell function. Through its impact on key cancer hallmarks and by creating a physical barrier conducive to tumor survival, hypoxia modulates tumor cell escape from the mounted immune response. The tumor cell-immune cell crosstalk in the context of a hypoxic TME tips the balance towards a cold and immunosuppressed microenvironment that is resistant to immune checkpoint inhibitors (ICI). Nonetheless, evidence is emerging that could make hypoxia an asset for improving response to ICI. Tackling the tumor immune contexture has taken on an in silico, digitalized approach with an increasing number of studies applying bioinformatics to deconvolute the cellular and non-cellular elements of the TME. Such approaches have additionally been combined with signature-based proxies of hypoxia to further dissect the turbulent hypoxia-immune relationship. In this review we will be highlighting the mechanisms by which hypoxia impacts immune cell functions and how that could translate to predicting response to immunotherapy in an era of machine learning and computational biology.


Assuntos
Hipóxia/imunologia , Imunomodulação , Neoplasias/imunologia , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Proteínas de Checkpoint Imunológico/genética , Proteínas de Checkpoint Imunológico/metabolismo , Aprendizado de Máquina , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Evasão Tumoral/imunologia , Microambiente Tumoral/imunologia
12.
Mol Immunol ; 142: 105-119, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34973498

RESUMO

In the late 1980s and early 1990s, the hunt for a transporter molecule ostensibly responsible for the translocation of peptides across the endoplasmic reticulum (ER) membrane yielded the successful discovery of transporter associated with antigen processing (TAP) protein. TAP is a heterodimer complex comprised of TAP1 and TAP2, which utilizes ATP to transport cytosolic peptides into the ER across its membrane. In the ER, together with other components it forms the peptide loading complex (PLC), which directs loading of high affinity peptides onto nascent major histocompatibility complex class I (MHC-I) molecules that are then transported to the cell surface for presentation to CD8+ T cells. TAP also plays a crucial role in transporting peptides into phagosomes and endosomes during cross-presentation in dendritic cells (DCs). Because of the critical role that TAP plays in both classical MHC-I presentation and cross-presentation, its expression and function are often compromised by numerous types of cancers and viruses to evade recognition by cytotoxic CD8 T cells. Here we review the discovery and function of TAP with a major focus on its role in cross-presentation in DCs. We discuss a recently described emergency route of noncanonical cross-presentation that is mobilized in DCs upon TAP blockade to restore CD8 T cell cross-priming. We also discuss the various strategies employed by cancer cells and viruses to target TAP expression or function to evade immunosurveillance - along with some strategies by which the repertoire of peptides presented by cells which downregulate TAP can be targeted as a therapeutic strategy to mobilize a TAP-independent CD8 T cell response. Lastly, we discuss TAP polymorphisms and the role of TAP in inherited disorders.


Assuntos
Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 3 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Apresentação de Antígeno/imunologia , Apresentação Cruzada/imunologia , Evasão Tumoral/imunologia , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Membro 3 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Células Dendríticas/imunologia , Retículo Endoplasmático/metabolismo , Humanos , Complexo Principal de Histocompatibilidade/imunologia , Neoplasias/imunologia , Transporte Proteico/genética , Linfócitos T Citotóxicos/imunologia , Vírus/imunologia
13.
BMC Cancer ; 22(1): 46, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996407

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) are currently one of the most promising therapy options in the field of oncology. Although the first pivotal ICI trial results were published in 2011, few biomarkers exist to predict their therapy outcome. PD-L1 expression and tumor mutational burden (TMB) were proven to be sometimes-unreliable biomarkers. We have previously suggested the analysis of processing escapes, a qualitative measurement of epitope structure alterations under immune system pressure, to provide predictive information on ICI response. Here, we sought to further validate this approach and characterize interactions with different forms of immune pressure. METHODS: We identified a cohort consisting of 48 patients with advanced non-small cell lung cancer (NSCLC) treated with nivolumab as ICI monotherapy. Tumor samples were subjected to targeted amplicon-based sequencing using a panel of 22 cancer-associated genes covering 98 mutational hotspots. Altered antigen processing was predicted by NetChop, and MHC binding verified by NetMHC. The NanoString nCounter® platform was utilized to provide gene expression data of 770 immune-related genes. Patient data from 408 patients with NSCLC were retrieved from The Cancer Genome Atlas (TCGA) as a validation cohort. RESULTS: The two immune escape mechanisms of PD-L1 expression (TPS score) (n = 18) and presence of altered antigen processing (n = 10) are mutually non-exclusive and can occur in the same patient (n = 6). Both mechanisms have exclusive influence on different genes and pathways, according to differential gene expression analysis and gene set enrichment analysis, respectively. Interestingly, gene expression patterns associated with altered processing were enriched in T cell and NK cell immune activity. Though both mechanisms influence different genes, they are similarly linked to increased immune activity. CONCLUSION: Pressure from the immune system will lay the foundations for escape mechanisms, leading to acquisition of resistance under therapy. Both PD-L1 expression and altered antigen processing are induced similarly by pronounced immunoactivity but in different context. The present data help to deepen our understanding of the underlying mechanisms behind those immune escapes.


Assuntos
Inibidores de Checkpoint Imunológico , Imunoterapia , Transcriptoma , Evasão Tumoral , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Biologia Computacional , Aprendizado Profundo , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Masculino , Pessoa de Meia-Idade , Nivolumabe/farmacologia , Nivolumabe/uso terapêutico , Estudos Retrospectivos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Transcriptoma/imunologia , Evasão Tumoral/efeitos dos fármacos , Evasão Tumoral/genética , Evasão Tumoral/imunologia
14.
J Immunother Cancer ; 10(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35017152

RESUMO

BACKGROUND: Granzyme B is a key effector of cytotoxic T lymphocytes (CTLs), and its expression level positively correlates with the response of patients with mesothelioma to immune checkpoint inhibitor immunotherapy. Whether metabolic pathways regulate Gzmb expression in CTLs is incompletely understood. METHODS: A tumor-specific CTL and tumor coculture model and a tumor-bearing mouse model were used to determine the role of glucose-6-phosphate dehydrogenase (G6PD) in CTL function and tumor immune evasion. A link between granzyme B expression and patient survival was analyzed in human patients with epithelioid mesothelioma. RESULTS: Mesothelioma cells alone are sufficient to activate tumor-specific CTLs and to enhance aerobic glycolysis to induce a PD-1hi Gzmblo CTL phenotype. However, inhibition of lactate dehydrogenase A, the key enzyme of the aerobic glycolysis pathway, has no significant effect on tumor-induced CTL activation. Tumor cells induce H3K9me3 deposition at the promoter of G6pd, the gene that encodes the rate-limiting enzyme G6PD in the pentose phosphate pathway, to downregulate G6pd expression in tumor-specific CTLs. G6PD activation increases acetyl-coenzyme A (CoA) production to increase H3K9ac deposition at the Gzmb promoter and to increase Gzmb expression in tumor-specific CTLs converting them from a Gzmblo to a Gzmbhi phenotype, thus increasing CTL tumor lytic activity. Activation of G6PD increases Gzmb+ tumor-specific CTLs and suppresses tumor growth in tumor-bearing mice. Consistent with these findings, GZMB expression level was found to correlate with increased survival in patients with epithelioid mesothelioma. CONCLUSION: G6PD is a metabolic checkpoint in tumor-activated CTLs. The H3K9me3/G6PD/acetyl-CoA/H3K9ac/Gzmb pathway is particularly important in CTL activation and immune evasion in epithelioid mesothelioma.


Assuntos
Glucosefosfato Desidrogenase/metabolismo , Granzimas/metabolismo , Evasão da Resposta Imune/imunologia , Imunoterapia/métodos , Redes e Vias Metabólicas/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T/metabolismo , Evasão Tumoral/imunologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos
15.
Biomed Pharmacother ; 146: 112516, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34906767

RESUMO

The growth and development of cancer are directly correlated to the suppression of the immune system. A major breakthrough in cancer immunotherapy depends on various mechanisms to detect immunosuppressive factors that inhibit anti-tumor immune responses. Immune checkpoints are expressed on many immune cells such as T-cells, regulatory B cells (Bregs), dendritic cells (DCs), natural killer cells (NKs), regulatory T (Tregs), M2-type macrophages, and myeloid-derived suppressor cells (MDSCs). Immune inhibitory molecules, including CTLA-4, TIM-3, TIGIT, PD-1, and LAG-3, normally inhibit immune responses via negatively regulating immune cell signaling pathways to prevent immune injury. However, the up-regulation of inhibitory immune checkpoints during tumor progression on immune cells suppresses anti-tumor immune responses and promotes immune escape in cancer. It has recently been indicated that cancer cells can up-regulate various pathways of the immune checkpoints. Therefore, targeting immune inhibitory molecules through antibodies or miRNAs is a promising therapeutic strategy and shows favorable results. Immune checkpoint inhibitors (ICIs) are introduced as a new immunotherapy strategy that enhance immune cell-induced antitumor responses in many patients. In this review, we highlighted the function of each immune checkpoint on different immune cells and therapeutic strategies aimed at using monoclonal antibodies and miRNAs against inhibitory receptors. We also discussed current challenges and future strategies for maximizing these FDA-approved immunosuppressants' effectiveness and clinical success in cancer treatment.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Inibidores de Checkpoint Imunológico/farmacologia , Proteínas de Checkpoint Imunológico/metabolismo , MicroRNAs/farmacologia , Monitorização Imunológica/métodos , Neoplasias/patologia , Antineoplásicos Imunológicos/uso terapêutico , Regulação para Baixo , Inibidores de Checkpoint Imunológico/uso terapêutico , MicroRNAs/uso terapêutico , Neoplasias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Evasão Tumoral/imunologia , Regulação para Cima
16.
J Cancer Res Clin Oncol ; 148(1): 47-56, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34783871

RESUMO

The CKLF-like MARVEL transmembrane domain-containing protein 6 (CMTM6), which binds to the programmed death ligand 1 (PD-L1) and stabilizes the expression of PD-L1 on the cell surface, has been recently discovered as a novel regulator of PD-L1 expression in cancer. PD-L1 is an immune checkpoint inhibitory molecule that can mediate the immune escape of tumor cells in various tumors and has been studied intensively in recent years. In 2017, two articles simultaneously reported that CMTM6 can stabilize the expression of PD-L1 on the plasma membrane and prevent PD-L1 from being degraded by lysosomes; therefore, CMTM6 may play an important role in tumor cell immune escape and immunosuppression. At present, there are few studies on the relationship between the expression of CMTM6 and PD-L1 in different tumors and diseases. These studies together suggested that CMTM6 may be a potential novel immunotherapy target. In this review, we briefly describe the latest research progresses of CMTM6 in various cancers and other diseases.


Assuntos
Antígeno B7-H1/metabolismo , Membrana Celular/metabolismo , Proteínas com Domínio MARVEL/metabolismo , Proteínas da Mielina/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Evasão Tumoral/imunologia , Humanos , Imunoterapia , Lisossomos/metabolismo , Microambiente Tumoral/imunologia
17.
Exp Biol Med (Maywood) ; 247(3): 221-236, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34704492

RESUMO

Uterine corpus endometrial carcinoma (UCEC) is the third most frequent gynecological malignancies in the female reproductive system. Long non-coding RNAs (lncRNAs) are closely involved in tumor progression. This study aimed to develop an immune subtyping system and a prognostic model based on lncRNAs for UCEC. Paired lncRNAs and non-negative matrix factorization were applied to identify immune subtypes. Enrichment analysis was conducted to assess functional pathways, immune-related genes, and cells. Univariate and multivariate Cox regression analysis were performed to analyze the relation between lncRNAs and overall survival (OS). A prognostic model was constructed and optimized by least absolute shrinkage and selection operator (LASSO) and Akaike information criterion (AIC). Two immune subtypes (C1 and C2) and four paired-prognostic lncRNAs closely associated with overall survival were identified. Some immune features, sensitivity of chemotherapy and immunotherapy, and the relation with immune escape showed variations between two subtypes. A nomogram established based on prognostic model and clinical features was effective in OS prediction. The immune subtyping system based on lncRNAs and the four-paired-lncRNA signature was predictive of UCEC prognosis and can facilitate personalized therapies such as immunotherapy or RNA-based therapy for UCEC patients.


Assuntos
Biomarcadores Tumorais/imunologia , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/imunologia , Imunoterapia , RNA Longo não Codificante/imunologia , Biomarcadores Tumorais/genética , Neoplasias do Endométrio/mortalidade , Neoplasias do Endométrio/terapia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Nomogramas , Prognóstico , RNA Longo não Codificante/genética , Resultado do Tratamento , Evasão Tumoral/genética , Evasão Tumoral/imunologia
18.
Gastroenterology ; 162(2): 575-589, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34678217

RESUMO

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is characterized by intratumoral accumulation of regulatory T cells (Tregs), which suppresses antitumor immunity. This study was designed to investigate how microRNAs regulate immunosuppression in HCC. METHODS: FVB/NJ mice were hydrodynamically injected with AKT/Ras or c-Myc and Sleeping Beauty transposon to induce HCC. The Sleeping Beauty system was used to deliver microRNA-15a/16-1 into livers of mice. Flow cytometry and immunostaining were used to determine changes in the immune system. RESULTS: Hydrodynamic injection of AKT/Ras or c-Myc into mice resulted in hepatic enrichment of Tregs and reduced cytotoxic T cells (CTLs) and HCC development. HCC impaired microRNA-15a/16-1 biogenesis in Kupffer cells (KCs) of AKT/Ras and c-Myc mice. Hydrodynamic injection of microRNA-15a/16-1 fully prevented HCC in AKT/Ras and c-Myc mice, while 100% of control mice died of HCC. Therapeutically, microRNA-15a/16-1 promoted a regression of HCC in both mouse models, impaired hepatic enrichment of Tregs, and increased hepatic CTLs. Mechanistically, a significant increase was observed in serum C-C motif chemokine 22 (CCL22) and transcription of Ccl22 in KCs of AKT/Ras and c-Myc mice. MicroRNA-15a/16-1 prevented KCs from overproducing CCL22 by inhibiting nuclear factor-κB that activates transcription of Ccl22. By reducing CCL22 binding to C-C chemokine receptor type 4 on Tregs, microRNA-15a/16-1 impaired Treg chemotaxis. Disrupting the interaction between microRNA-15a/16-1 and nuclear factor-κB impaired the ability of microRNA-15a/16-1 to prevent hepatic Treg accumulation and HCC. Depletion of cluster of differentiation 8+ T cells and additional treatment of CCL22 recovered growth of HCC that was fully prevented by microRNA-15a/16. CONCLUSIONS: MicroRNA-15a/16-1 attenuates immunosuppression by disrupting CCL22-mediated communication between KCs and Tregs. MicroRNA-15a/16-1 represents a potential immunotherapy against HCC.


Assuntos
Carcinoma Hepatocelular/imunologia , Células de Kupffer/imunologia , Neoplasias Hepáticas Experimentais/imunologia , MicroRNAs/genética , Linfócitos T Reguladores/imunologia , Evasão Tumoral/imunologia , Animais , Carcinoma Hepatocelular/genética , Células de Kupffer/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas Experimentais/genética , Camundongos , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-myc , Linfócitos T Reguladores/metabolismo , Evasão Tumoral/genética , Proteínas ras
19.
Gastroenterology ; 162(3): 799-812, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34687740

RESUMO

BACKGROUND & AIMS: A detailed understanding of antitumor immunity is essential for optimal cancer immune therapy. Although defective mutations in the B2M and HLA-ABC genes, which encode molecules essential for antigen presentation, have been reported in several studies, the effects of these defects on tumor immunity have not been quantitatively evaluated. METHODS: Mutations in HLA-ABC genes were analyzed in 114 microsatellite instability-high colorectal cancers using a long-read sequencer. The data were further analyzed in combination with whole-exome sequencing, transcriptome sequencing, DNA methylation array, and immunohistochemistry data. RESULTS: We detected 101 truncating mutations in 57 tumors (50%) and loss of 61 alleles in 21 tumors (18%). Based on the integrated analysis that enabled the immunologic subclassification of microsatellite instability-high colorectal cancers, we identified a subtype of tumors in which lymphocyte infiltration was reduced, partly due to reduced expression of HLA-ABC genes in the absence of apparent genetic alterations. Survival time of patients with such tumors was shorter than in patients with other tumor types. Paradoxically, tumor mutation burden was highest in the subtype, suggesting that the immunogenic effect of accumulating mutations was counterbalanced by mutations that weakened immunoreactivity. Various genetic and epigenetic alterations, including frameshift mutations in RFX5 and promoter methylation of PSMB8 and HLA-A, converged on reduced expression of HLA-ABC genes. CONCLUSIONS: Our detailed immunogenomic analysis provides information that will facilitate the improvement and development of cancer immunotherapy.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Genes MHC Classe I/genética , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Microglobulina beta-2/genética , Alelos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Metilação de DNA , Epigênese Genética , Expressão Gênica , Antígenos HLA-A/genética , Antígenos HLA-A/metabolismo , Humanos , Imunogenética , Linfócitos do Interstício Tumoral , Instabilidade de Microssatélites , Complexo de Endopeptidases do Proteassoma/genética , Fatores de Transcrição de Fator Regulador X/genética , Taxa de Sobrevida , Microglobulina beta-2/metabolismo
20.
Semin Cancer Biol ; 79: 68-82, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-32201368

RESUMO

In the last decade, a large amount of research has focused on elucidating the mechanisms that account for homing disseminated cancer cells (DCCs) from solid tumours to distant organs, which successively progress to overt metastatic disease; this is currently incurable. A better understanding of DCC behaviour is expected to allow detectable metastasis prevention by more effectively targeting 'metastatic seeds before they sprout'. As DCC biology co-evolved with that of the primary tumour, and due to the many similarities between them, the term 'niche' has been borrowed from normal adult stem cells (ASCs) to define the site of DCC metastatic colonisation. Moreover, heterogeneity, survival, protection, stemness and plasticity as well as the prolonged G0-G1 dormant state in the metastatic niche have been the main aspects of intense investigation. Consistent with these findings, in solid cancers with minimal residual disease (MRD), it has been proposed to prolong adjuvant therapy by targeting specific molecular pathway(s) involving DCC dormancy. However, so far, few disappointing clinical data have been reported. As an alternative strategy, because immune-surveillance contributes to the steady state of the DCC population and likely to the G0-G1 state of cancer cells, we have used prolonged immune-modulatory cytostatic chemotherapy, active immune stimulation with an INF-ß/IL-2 sequence or drugs inhibiting myeloid-derived suppressor cell (MDSC)/Treg-mediated immune suppression. This strategy, mainly aimed at boosting the immune response, is based on recent findings suggesting the downregulation of immune escape mechanisms as well as other principal hallmarks during the G0-G1 state and/or in MRD. Preliminary clinical and/or laboratory data suggest the efficacy of this strategy in gastrointestinal and some endocrine-dependent cancers. Following this, we propose therapeutic schedules to prevent DCC activation and proliferation in solid cancers at a high risk of relapse or as maintenance therapy in metastatic patients after complete response (CR) to conventional treatment.


Assuntos
Fatores Imunológicos/uso terapêutico , Imunoterapia/métodos , Metástase Neoplásica/prevenção & controle , Recidiva Local de Neoplasia/prevenção & controle , Neoplasia Residual/terapia , Células Neoplásicas Circulantes/patologia , Proliferação de Células/efeitos dos fármacos , Humanos , Interleucina-2/metabolismo , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Metástase Neoplásica/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasia Residual/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Evasão Tumoral/efeitos dos fármacos , Evasão Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...